Optimization of the emitter’s bandgap and thickness of AlxGa1-xAs/ GaAs Multi-junction solar cell

Abderrahmane HEMMANI, Abdelkader NOURI, Hamid KHACHAB, Toufik ATOUANI


In this paper an optimization model of the top cell emitter’s bandgap and thickness of AlxGa1-xAs/ GaAs Multi-Junction Solar Cell (MJSC) is treated. This study allows to enhance, after two optimization steps, efficiency energy conversion up to 24.9% compared with existing studies. This model is based on the maximization of the smallest photocurrent over two solar cell junctions of the MJSC. The efficiency is boosted due to the limitation of the different types of photons’ energy losses known in the GaAs solar cell materials.

Total Views: 190


Multi-junction Solar Cell; Bandgap; thickness; Photocurrent; Optimization; Efficiency; AlxGa1-xAs/GaAs

Full Text:



M. Dhankhar, O. Pal Singh, V.N. Singh, “Physical principles of losses in thin film solar cells and efficiency enhancement methods”, Renewable and Sustainable Energy Reviews, vol. 40, pp. 214-223, 2014.

T. Frijnts, S. Kühnapfel, S. Ring, O. Gabriel, S. Calnan, J. Haschke, B. Stannowski, B. Rech, R. Schlatmann, “Analysis of photo-current potentials and losses in thin film crystalline silicon solar cells”, Solar Energy Materials and Solar Cells,vol.143, pp. 457-466, 2015.

M. Berginski, J. Hüpkes, A. Gordijn, W. Reetz, T. Wätjen, B. Rech, M. Wuttig, “Experimental studies and limitations of the light trapping and optical losses in microcrystalline silicon solar cells”, Solar Energy Materials and Solar Cells, vol. 92, pp. 1037-1042, 2008.

M. Limpinsel, A. Wagenpfahl, M. Mingebach, C. Deibel, and V. Dyakonov, “Photocurrent in bulk heterojunction solar cells”, Phys. Rev. Vol. B 81, pp. 085203, 2010.

A. P. Kirk and M. V. Fischetti, “Fundamental limitations of hot-carrier solar cells”, Phys. Rev, Vol. B 86, pp. 165206, 2012.

S. Saylan, T. Milakovich , S. Abdul Hadi, A. Nayfeh, Eugene A. Fitzgerald, Marcus S. Dahlem, “Multilayer antireflection coating design for GaAs0.69P0.31/Si dual-junction solar cells”, Solar Energy, Vol. 122, pp.76–86, 2015.

M.A. Green, K. Emery, Y. Hishikawa, W. Warta,“ Solar cell efficiency tables (version 44)”, Prog. Photovolt. Vol. 22, pp. 701-710, 2014.

H. Tan, P. Babal, M. Zeman, A. H.M. Smets,“Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar”, Solar Energy Materials and Solar Cells, Vol.132, pp. 597-605, 2015.

N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the Electronic Band Structure for Multiband Solar Cells”, Phys. Rev. Lett, Vol. 106, pp. 028701, 2011.

S. Kim, S. Kasashima, P. Sichanugrist, T. Kobayashi, T. Nakada, M. Konagai, “Development of thin-film solar cells using solar spectrum splitting technique”, Solar Energy Materials and Solar Cells,Vol.119, pp.214–218, 2013.

R. R. King, D. Bhusari, A. Boca, D. Larrabee, X.-Q. Liu, W. Hong, C. M. Fetzer, D. C. Law, and N. H. Karam, “Band gap-voltage offset and energy production in next-generation multijunction solar cells”, 25th European Photovoltaic Solar Energy Conference, Valencia, Spain, Sep. 6-10. pp. 33-47, 2010.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP∕GaInAs∕GeGaInP∕GaInAs∕Ge multijunction solar cells”,Appl Phys Lett, Vol. 90, pp. 183516, 2007.

A. Le Bris, J. Rodiere, C. Colin et al, “Hot Carrier Solar Cells: Controlling Thermalization in Ultrathin Devices”, IEEE Journal of Photovoltaics, Vol. 2 pp. 506-511, Oct 2012.

Goldberg Yu. A, M. Levinshtein, S. Rumyantsev and M. Shur, Handbook Series on Semiconductor Parameters, 1st ed., vol.2. London: World Scientific, 1999, pp. 1-36.

S. Adachi, “GaAs, AlAs, and Al x Ga1−x As: Material parameters for use in research and device applications”, J. Appl. Phys, Vol. 58, pp.R1-R29, 1985.

E. Lorenzo, Solar Electricity: Engineering of Photovoltaic System, 1st ed., Sevilla: Progensa, 1994, ch. 2.

J.N. Shive, The properties, physics, and design of Semiconductor Devices, Princeton, New Jersey: Van Nostrand, 1959, ch. 2.

Sarah R. Kurtz, P. Faine and J. M. Olson, “Modeling of two‐junction, series‐connected tandem solar cells using top‐cell thickness as an adjustable parameter”, J. Appl. Phys,Vol.68, pp.1890, 1990.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of Al x Ga1−x As”, J. Appl. Phys, Vol. 60, pp.754-767, 1986.

J. L. Aubel, U. K. Reddy, S. Sundaram, W. T. Beard, and J. Comas, “Interband transitions in molecular‐beam‐epitaxial Al x Ga1−x As/GaAs”, J. Appl. Phys,Vol.58, pp. 495-498, 1985.

J. Zou, Y. Zhang, W. Deng, X. Peng, S. Jiang, and B. Chang, “Effects of graded band-gap structures on spectral response of AlGaAs/GaAs photocathodes”, Applied Optics, Vol. 54, pp. 8521-8525, 2015.

H. Urabe, M. Kuramoto, T. Nakano, A. Kawaharazuka, T. Makimoto, Y. Horikoshi, “Effects of surface barrier layer in AlGaAs/GaAs solar cells”, Journal of Crystal Growth, Vol. 425, pp. 330–332, 2015.

M. Abderrezek, F. Djahli, M. Fathi, M. Ayad, “Numerical Modeling of GaAs Solar Cell Performances”, Elektronika ir Elektrotechnika, Vol. 19, pp.41-44, 2013.

S. Khelifi et A. Belghachi, “Le Rôle de la Couche Fenêtre dans les Performances d’une Cellule Solaire GaAs”, Rev. Energ. Ren, Vol.7, pp. 13-21, 2004.


  • There are currently no refbacks.

Online ISSN: 1309-0127


ijrereditor@gmail.com; ilhcol@gmail.com;

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Thomson Reuters)