Design and Simulation of High Efficiency Tin Halide Perovskite Solar Cell

usha Mandadapu, S Victor Vedanayakam, K Thyagarajan, M Raja Reddy, B Jagadeeshbabu


Perovskite solar cells are becoming dominant alternative for the traditional solar cells reaching an efficiency of 22.1% in a short span of eight years (2008-2016).  In this work we designed a tin based perovskite simulated model with novel architecture of Glass/ZnO:Al/TiO2/CH3NH3SnI3/CuI/Au and analysed using the solar cell capacitance simulator (SCAPS-1D), which is well adapted to study the photovoltaic architectures. Using this software tool, we studied the effect of absorber layer parameters on the photovoltaic parameters of the designed model. We optimized the thickness, defect density, band gap of absorber layer and  operating temperature of the model by simulating at various conditions. With the optimized thickness (0.6 µm), defect density of absorber layer (1014 cm-3), band gap(1.3 eV) the encouraging result of  maximum power conversion efficiency(PCE) 24.82%, the short circuit current density(Jsc) is 25.67 mA/cm2, and fill factor(FF) is78.14% and open circuit voltage(Voc) is 1.0413V  are predicted. The results are indicating that the lead free CH3NH3SnI3 is having the great potential to be an absorber layer with suitable in organic hole transport material like CuI to achieve high efficiency. This simulation model will become a good guide for the fabrication of high efficiency tin based perovskite solar cell.

Total Views: 340


Perovskite, Design, Solar cell, SCAPS-1D,Simulation,Absorber layer

Full Text:



Martin A. Green, Anita Ho-Baillie1 and Henry J. Snaith (july 2014) “The emergence of perovskite solar cells,” Nat. Photonics, vol. 8, no. 7, pp. 506–514, DOI: 10.1038/NPHOTON.2014.134.

Mingzhen Liu, Michael B. Johnston& Henry J. Snaith, .,( Sep. 2013)” “Efficient planar hetero junction perovskite solar cells by vapour deposition., Nature, vol. 501, no. 7467, pp. 395–8,DOI: 10.1038/nature12509.

Dianyi Liu & Timothy L. Kelly(1 February 2014) Perovskite solar cells with a planar hetero junction structure prepared using room-temperature solution processing techniques Nature Photonics 8,133–138 | doi:10.1038/nphoton.2013.342..

Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai and Tsutomu Miyasaka Organo metal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells J. Am. Chem. Soc., 2009, 131 (17), pp 6050–6051 DOI: 10.1021/ja809598r.

NREL. [Online]. Available: efficiency_chart.jpg

Oliva-Chatelain.A et al., “An Introduction to Solar Cell Technology,” 2011. [Online]. Available:

Jiandong Fan, Baohua Jia, and Min Gu,(2014) “Perovskite-based low-cost and high-efficiency hybrid halide solar cells,” Photonics Res., vol. 2, no.5.pp 111-120.

Chairella.F,A.Zappettini,P.Ferro,T.Besagni,F.Lassi,A.Cassinese,M.Barra,R.Vagilo,C.Aruta(2005) Growth and Characterization of hybrid (Cn H2n+1 NH3)2 CuCl4 self assembled films Cryst. Res. Technol. 40, No. 10–11, 1028 – 1032. DOI 10.1002/crat.200410480.

Umari P, Mosconi E, De Angelis(2014 ) F Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci Rep. 2014 Mar 26;4:4467. doi: 10.1038/srep04467.

Kumar MH1, Dharani S, Leong WL, Boix PP, Prabhakar RR, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar SG, Mathews(2014) N Lead-free halide perovskite solar cells with high photocurrents Adv Mater. 2014 Nov 5;26(41):7122-7. doi: 10.1002/adma.201401991.

Li Lang, Ji-Hui Yang, Heng-Rui Liu, H.J. Xiang, X.G. Gong(January 2014), First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites Physics Letters A Volume 378, Issue 3, Pages 290–293

Feng Hao, Constantinos C. Stoumpos, Duyen Hanh Cao, Robert P. H. Chang & Mercouri G. Kanatzidis, (May 2014 )“Lead-free solid-state organic–inorganic halide perovskite solar cells,” Nat. Photonics, vol. 8, no. 6, pp. 489–494. doi:10.1038/nphoton.2014.82.

Noel et al.,(2014) “Lead-Free Organic-Inorganic Tin Halide Perovskites for Photovoltaic Applications,” Energy Environ. Sci., vol. 7, pp. 3061–3068, 2014. DOI: 10.1039/c4ee01076k

Elizabeth. S. Effect of Structural Phase Transition on Charge-Carrier Lifetimes and Defects in CH3NH3SnI3 Perovskite. Phys. Chem. Lett., 7 (7), pp 1321–1326.DOI: 10.1021/acs.jpclett.6b00322

Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. H., & Kanatzidis, M. G. (2014). Lead-free solid-state organic-inorganic halide perovskite solar cells. Nature Photonics, 8(6), 489-494. DOI: 10.1038/nphoton.2014.82.

Burgelman, M., Nollet, P. and Degrave, S.,(2000) “Modeling Polycrystalline Semiconductor Solar Cells,” Thin SolidFilms, Vol. 361_362, pp. 527_532. doi: 10.1016/S0040-6090(99)00825-1.

Takashi Minemoto and Masashi Murata(2014) Device modelling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. Journal of Applied Physics.;116: 5, 054505. doi:

Wang, K.; Gunawan, O.; Todorov, T.; Shin, B.; Chey, S. J.; Bojarczuk, N. A.; Mitzi, D.; Guha, S.(2010)Thermally Evaporated Cu2ZnSnS4 Solar Cell,” Appl. Phys. Lett., Vol. 97, p. 143508 (2010). doi: 10.1063/13499284.

Seol, J. S., Lee, S. Y., Lee, J. C., et al., “Electrical and Optical Properties of Cu2ZnSnS4 Thin Films Prepared by RF Magnetron Sputtering Process,” Sol. Energy Mater. Sol. Cells, Vol. 75, No. 1_2, pp. 155_162 (2003). doi: 10.1016/S0927-0248(02)00127-7.

Mohammad I. Hossain, Fahhad H. Alharbi,Nouar Tabe(2015) Copper Oxide as Inorganic Hole Transport Material for Lead Halide Perovskite Based Solar Cells of Enhanced Performance Article in Solar Energy October 2015.DOI: 10.1016/j.solener.2015.07.040.

Hui-Jing Du, Wei-Chao Wang, and Jian-Zhuo Zhu Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency Chin. Phys. B Vol. 25, No. 10 (2016) 108803. DOI: 10.1088/1674-1056/25/10/108802.

Amu, Tochukwu Loreta December, 2014 Performance Optimization of Tin Halide Perovskite Solar cells via numerical simulation PhD thesis African University of Science and Technology, Abuja Abuja, Nigeria.

Bernabé Marí Soucase, Inmaculada Guaita Pradas and Krishna R. Adhikari (2016). Numerical Simulations on Perovskite Photovoltaic Devices, Perovskite Materials - Synthesis, Characterisation, Properties, and Applications, Dr. Likun Pan (Ed.), InTech, DOI: 10.5772/61751.

Hongbin Wu and Lai-Sheng Wang(1997)A study of nickel monoxide (NiO), nickel dioxide (ONiO), and Ni(O2)Ni(O2) complex by anion photoelectron spectroscopy The Journal of Chemical Physics 107, 16 (1997); doi:

Hodes, G., (2013). Perovskite-based solar cells. Applied physics Science 342, 317–318 doi: 10.1126/science

Madelung, O., 2004. Semiconductors Data Handbook, Basic Data, thirded. Springer.

Fonash, 2010. Solar Cell Device Physics, second ed. Academic Press.

Chen, D., Wang, Y., Lin, Z., Huang, J., Chen, X.Z., Pan, D., Huang, F.,2010. Growth strategy and physical properties of the high mobility p-type Cui crystal. Cryst. Crystal Growth & Design 10(5) • April 2010. DOI: 10.1021/cg100270d.

Qing-Yuan Chen, Yang Huang, Peng-Ru Huang, Tai Ma, Chao Cao, and Yao He(2016) Electro negativity explanation on the efficiency-enhancing mechanism of the hybrid inorganic–organic perovskABX3 from first-principles study Chin. Phys. B Vol. 25, No. 2 027104 DOI: 10.1088/1674-1056/25/2/027104.

Stoumpos CC1, Malliakas CD, Kanatzidis MG.(2013) Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photo luminescent properties Inorg Chem. 52(15):9019-38. doi: 10.1021/ic401215x.

Xosrovashvilia, G., Gorjib, N.E., 2013. Numerical analysis of TiO2/ Cu2ZnSnS4 nano structured PV using SCAPS-1D. J. Mod. Opt. 60, 936–940. J-GLOBAL ID:201302220728573290.

Peijie Lin, Lingyan Lin†, Jinling Yu, Shuying Cheng, Peimin Lu and Qiao Zheng(2014) Numerical Simulation of Cu2ZnSnS4 Based Solar Cells with In2S3 Buffer Layers by SCAPS-1D Journal of Applied Science and Engineering, Vol. 17, No. 4, pp. 383_390 DOI: 10.6180/jase.2014.17.4.05

Ball, J. M., Lee, M. M., Hey, A. & Snaith, H. J. (2013) Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6, 1739–1743 . DOI: 10.1039/C3EE40810H.

Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S and Sum T C 2013 Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3science 342 344. Science. 2013 Oct 18;342(6156):344-7. doi: 10.1126/science.1243167.


Yin.W.J, T. T. Shi, and Y. T. Yan,(2014) “Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber,” Appl. Phys. Lett., vol. 104, no. 6, pp. 063903-1–063903-4.DOI: 10.1063/1.4864778.

Yin.W.J, T. T. Shi, and Y. F. Yan,(2014) “Unique properties of halide perovskites as possible origins of the superior solar cell performance,” Adv. Mater., vol. 26, no. 27, pp. 4653–4658, Jul. 2014. DOI: 10.1002/adma.201306281.

Kagan C R, Mitzi D B and Dimitra kopoulos C D (1999) Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors Science 286 945 Vol. 286, Issue 5441, pp.945-947DOI: 10.1126/science.286.5441.94

Mitzi DB, Wang S, Feild CA, Chess CA, Guloy AM (1995 ) Conducting Layered Organic-inorganic Halides Containing Oriented Perovskite Sheets. Science. 10;267(5203):1473-6 DOI:10.1126/science.267.5203.1473.

Steve Albrecht , Michael Saliba, Juan-Pablo Correa-Baena , Klaus Jäger4, Lars Korte1 , Anders Hagfeldt , Michael Grätzel and Bernd Rech1 Albrecht S, Saliba M, Correabaena J P, J¨ager K, Korte L, Hagfeldt A, Gr¨atzel M and Rech B (2016) Towards optical optimization of planar monolithic perovskite/silicon-heterojunction tandem solar cells J. Opt. 18 (2016) 064012 (10pp) doi:10.1088/2040-8978/18/6/0640.

Sonia R. Raga, Eva M. Barea, and Francisco Fabregat-Santiago (June 1, 2012)Analysis of the Origin of Open Circuit Voltage in Dye Solar Cells J. Phys. Chem. Lett., 2012, 3 (12), pp 1629–1634 DOI: 10.1021/jz3005464.

Wei Wang, Mark T. Winkler, Oki Gunawan, Tayfun Gokmen, Teodor K. Todorov, Yu Zhu andDavid B. Mitzi(2013) “Thin Film Solar Cell with 8.4% Power Conversion fficiencyUsing an Earth-Abundant Cu2ZnSnS4 Absorber,” Prog


  • There are currently no refbacks.

Online ISSN: 1309-0127;;

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Thomson Reuters)