Thermal and Electrical Performance analysis of Rooftop Solar Photovoltaic Power Generator

AJOYA KUMAR PRADHAN, SANJEEB KUMAR KAR, MAHENDRA KUMAR MOHANTY

Abstract


The solar energy is the vital source of renewable energy used today and nearly eighty percentage of the energy is absorbed by the surroundings. The mathematical modeling of energy and exergy analysis with both the thermal and electrical quality of polycrystalline PV module has been entailed under different seasonal climatic circumstances of Bhubaneswar, Odisha, India. Different parameters like energy, converted power and exergy efficiencies have been estimated. The simulation results clarify that the efficiency of the above-mentioned parameters are changing with respect to the variation in the wind speed, temperature and solar insolations. The data validation has been performed by using artificial neural network. Ambient temperature, cell temperature, wind speed, solar radiation and time are used as input, and thermal and electrical efficiencies are the outputs in ANN structure. It has been evidently observed that the correlation factor and efficiency are higher in training process when compared to the testing process.

Total Views: 106

Keywords


Energy; Exergy; Solar radiation; Photovoltaic module; Wind speed; ANN;

Full Text:

PDF

References


K. H. Solangi, M. R. Islam, R. Saidur, N. A. Rahim, H. Fayaz, “A review on global solar energy policy”, Renewable and Sustainable Energy Reviews, 15(4) (2011) 2149–2163.

E. K. Akpinar, F. Kocyigit, “Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates”, Applied Energy, 87(11) (2010) 3438-3450.

R. Saidura, G. BoroumandJazia, S. Mekhlif, M. Jameel, “Exergy analysis of solar energy applications”, Renewable and Sustainable Energy Reviews, 16 (2012) 350– 356.

C. Onan, D. B. Ozkan, S. Erdem, “Exergy analysis of a solar assisted absorption cooling system on an hourly basis in villa applications”, Energy, 35 (2010) 5277–5285.

D. Alta, E. Bilgili, C. Ertekin, O. Yaldiz, “Experimental investigation of three different solar air heaters: energy and exergy analyses”, Applied Energy, 87 (2010) 2953–2973.

S. Nayak, G. N. Tiwari, “Energy and exergy analysis of photovoltaic/thermal integrated with a solar greenhouse”, Energy and Buildings, 40 (2008) 2015–2021.

M. A. Rosen, C. A. Bulucea, “Using exergy to understand and improve the efficiency of electrical power technologies”, Entropy, 11 (2009) 820–835.

R. F. Ghahfarokhi, S. Khalilarya, R. Ebrahimi, “Energy and exergy analyses of homogeneous charge compression ignition engine”, Thermal Science. 17 (2013) 107–117.

T. J. Kotas, “The Exergy Method of Thermal Plant Analysis”, Anchor Brendon Ltd, Great Britain, (1985).

G. D. Vuckovi, M. V. Vukic, M. M. Stojiljkovic, D. D. Vuckovi, “Avoidable and unavoidable exergy destruction and exergoeconomic evaluation of the thermal processes in a real industrial plant”, Thermal Science. 16 (2) (2012) S433–S446.

I. Atmaca, S. Kocak, “Theoretical energy and exergy analyses of solar assisted heat pump space heating system”, Thermal Science. 18 (Suppl. (2)) (2014) S417–S427.

V. V. Tyagi, A.K. Pandey, G. Giridhar, B. Bandhopdhayay, S. R. Park, S. K. Tyagi, “Comparative study based on exergy analysis of solar air dryer using temporary thermal energy storage, International Journal of Energy Resources”, 36 (2012) 724–736.

E Saloux, A Teyssedou, M. Sorin, “Analysis of photovoltaic (PV) and Photovoltaic/thermal (PV/T) systems using the exergy method”, Energy Building, 67 (2013) 272-285.

S. A. Kalogirou, Sotirios Karellas, V. Badescu, K.Braimakis, “Energy analysis on solar thermal system: A better understanding of their sustainability”, Renewable Energy, 85 (2016) 1328-1333.

Y. A. Cengel, and M. A. Boles. “Thermodynamics: An Engineering Approach”. 5th edition. New York: Tata McGraw Hill, (2006).

A. Bejan, “Advanced Engineering Thermodynamics”, John Wiley & Sons, Chichester, UK, (1998).

R. Saidur, H. H. Masjuki, M. Y. Jamaluddin, “An application of energy and exergy analysis in residential sector of Malaysia”. Energy Policy, 35(2) (2007) 1050–1063.

M. Mohammadnejad, M. Ghazvini, F. S. Javadi, R. Saidur, “Estimating the exergy efficiency of engine using nanolubricants”. Energy Education Science and Technology A: Energy Science and Research, 27(2) (2011) 447–454.

R. Saidur, J. U. Ahamed, H. H. Masjuki, “Energy, exergy and economic analysis of industrial boilers”, Energy Policy 38(5) (2010) 2188–2197.

E. Dikmen, A. Sencan, R. Selbas, “Energetic and exergetic approach to vapour compression refrigeration cycle with two-stage and intercooler for new refrigerants”, Energy Education Science and Technology-Part A, 26(2) (2011) 205–219.

O. Hacihafizoglu. “Energy–exergy analysis of gas turbine cycle in a combined cycle power plant”, Energy Education Science and Technology-Part A, 27(1) (2011) 123–138.

R. Saidur, M. A. Sattar, H. H. Masjuki, S. Ahmed, U. Hashim, “An estimation of the energy and exergy efficiencies for the energy resources consumption in the transportation sector in Malaysia”, Energy Policy, 35(8) (2007) 4018–4026.

N. P. Nwosu, “Employing exergy-optimized pin fins in the design of an absorber in a solar air heater”, Energy 35(2) (2010) 571–575.

A. Shukla, D. Buddhi, R. L. Sawhney, “Solar water heaters with phase change material thermal energy storage medium: a review, Renewable & Sustainable Energy Reviews, 13(8) (2009) 2119–2125.

R. Gomri, “Energy and exergy analyses of seawater desalination system integrated in a solar heat transformer, Desalination, 249(1) (2009) 188–196.

C. Koroneos, E. Nanaki, G. Xydis. “Solar air conditioning systems and their applicability – an exergy approach”, Resources Conservation and Recycling, 55(1) (2010) 74–82.

A. R. Celma, F. Cuadros, “Energy and exergy analyses of OMW solar drying process”, Renewable Energy 34(3) (2009) 660–666.

M. V. J. J. Suresh, K. S. Reddy, A. K. Kolar, “4-E (energy, exergy, environment, and economic) analysis of solar thermal aided coal-fired power plants, Energy for Sustainable Development, 14 (2010) 267–279.

K. Sudhakar, T Srivastava, “Energy and exergy analysis of 36W solar photovoltaic module, International Journal Ambient Energy, (2013), http://dx.doi.org/10.1080/01430750.2013. 770799.

A. S. Joshi, I. Dincer, B. V. Reddy, “Thermodynamic assessment of photovoltaic systems”, Solar Energy, 83 (2016) 1139–1149.

R. Petela, “Exergy of undiluted thermal radiation”, Solar Energy, 74(6) (2003) 469–488.

S. Dubey, G. N. Tiwari, “Thermal modeling of a combined system of photovoltaic thermal (PV/T) solar water heater”, Solar Energy, 82(7), (2008) 602–612.

A. D. Sahin, I. Dincer, M. A. Rosen, “Thermodynamic analysis of solar photovoltaic cell systems”, Solar Energy Material and Solar. Cells, 91 (2007) 153–159.

J. Bisquert, D. Cahen, G. Hodes, S. Ruhle, and A. Zaban, “Physical chemical principles of photovoltaic conversion with nano-particulate, meso-porous dye-sensitized solar cells,” Journal of Physical Chemistry B, 108(24) (2004) 8106–8118.

P. T. Landsberg and T. Markvart, “The carnot factor in solar cell theory”, Solid-State Electronics, 42(4) (1998) 657–659.

A. A. Ghoneim, “Design optimization of photovoltaic powered water pumping systems”, Energy Conversion and Management, 47(11-12) (2006) 1449–1463.

E. Skoplaki, A. G. Boudouvis, and J. A. Palyvos, “A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting”, Solar Energy Materials and Solar Cells, 92(11) (2008) 1393–1402.

S. Armstrong, W.G. Hurley, “A thermal model for photovoltaic panels under varying atmospheric conditions”, Applied Thermal Engineering, 30 (2010) 1488-1495.

M.A. Rosen, F.C. Hooper, L.N. Barbaris, “Exergy analysis for the evaluation of the performance of closed thermal energy storage systems”. Transaction of the ASME, Journal of Solar Energy Engineering, 1988 (110) (2016) 255–261.

D.L. Evan, Simplified method for predicting photovoltaic array output, Sol. Energy 27 (1981) 555–560.

T. Hove, “A method for predicting long-term average performance of photovoltaic system”, Renewable Energy, 21 (2000) 207–229.

J. D. Mondel, Y. G. Yohanis, M. Smyth, B. Norton, “Long-term validated simulation of a building integrated photovoltaic system”, Solar. Energy, 78 (2005) 163–176.

M. T. Nishioka Hatayama, Y. Uraoka, T. Fuyuki, R. Hagihara, M. Watanabe, “Field test analysis of PV system output characteristics focusing on module temperature”, Solar Energy Material and Solar. Cells 75 (2003) 665–671.

Y. Jiang, “Prediction of monthly mean daily diffuse solar radiation using Artificial Neural Networks and comparison with other empirical models”, Energy Policy, 36 (2008) 3833-3837.

S. S. Leal, C. Tíba, R. Piacentini, “Daily UV radiation modeling with the usage of statistical correlations and Artificial Neural Networks”, Renewable Energy, 36 (2011) 3337-3344.

A. Koca, H. F. Oztop, Y. Varol, G. O. Koca, “Estimation of solar radiation using Artificial Neural Networks with different input parameters for Mediterranean region of Anatolia in Turkey”, Expert Systems with Applications, 38(7) (2011) 8756-8762.

S. A. Kalogirou, E. Mathioulakis, V. Belessiotis, “Artificial Neural Networks for the performance prediction of large solar systems”, Renew Energy, 63 (2014) 90–97.

A. K. Rai, N. D. Kaushika, B. Singh, N. Agarwal, “Simulation model of ANN based maximum power point tracking controller for solar PV system”, Solar Energy Material and Solar Cells, 95 (2011) 773–778.

M. Karamirad, M. Omid, R. Alimardani, H. Mousazadeh, S. N. Heidari, “ANN based simulation and experimental verification of analytical four and five-parameters models of PV modules”, Simulation Model Practice & Theory, 34 (2013) 86–98.

M. B. Ammar, M. Chaabene, Z. Chtourou, “Artificial Neural Network based control for PV/T panel to track optimum thermal and electrical power”, Energy Conversion Management, 65 (2013) 372–380.

A. Mellit, S. Sağlam, S. A. Kalogirou, “Artificial Neural Network-based model for estimating the produced power of a photovoltaic module”, Renewable Energy, 60 (2013) 71–78.

F. Almonacid, C. Rus, L. Hontoria, F J Munoz, “Characterisation of PV CIS module by artificial neural networks. A comparative study with other methods”, Renewable Energy, 35 (2010) 973–980.

Y. Yoru, T. H. Karakoc, A. Hepbasli, “Application of Artificial Neural Network method to exergy analysis of thermodynamic systems”, 8th International Conference on Machine Learning and Applications, Miami Beach, Florida, (2009) 13-15.

A. Sozen, T. Menlik, S. Unvar, "Determination of efficiency of flat-plate solar collectors using Neural Network approach", Expert Systems with Applications, 35 (2008) 1533-1539.

G. Boyle, “Renewable Energy Power for a Sustainable Future”. 2nd edition. Oxford: Oxford University Press (2004).

J. H. Watmuff, W. W. S. Charters, and D. Proctor, “Solar and wind induced external coefficients for solar collectors,”COMPLES, 2 (1977) 56.

S. P. Sukhatme, Solar Energy, McGraw-Hill, New York, NY, USA, 1993.


Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

www.ijrer.org

ijrereditor@gmail.com; ilhcol@gmail.com;

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Thomson Reuters)