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Abstract- This article deals with the dynamic simulation of a directly driven wind turbine (WT) with a full-scale converter as 
the interface to the grid. Using the doubly fed induction Generator (DFIG), the system is controlled by two command 
strategies. I the first step, we have considered the direct vector control (DVC) strategy with three-level space vector 
modulation (SVM) and in the second one, we have applied the fuzzy sliding mode control (FSMC) strategy with three-level 
SVM inverter. Simulation results investigated good performances of both proposed non-linear approaches. 

Keywords Doubly fed induction generator, wind turbine, direct vector control, fuzzy sliding mode control, and three-level 
space vector modulation. 

 

1. Introduction 

Traditionally, wind turbine systems (WTSs) based on the 
doubly fed induction generator (DFIG) dominated the wind 
energy generations due to the outstanding advantages, 
including small converters rating around 30% of the 
generator rating, lower converter cost. However, the DFIG-
based WTS are mainly installed in remote and rural areas [1]. 
Various command schemes have been proposed for studying 
the behaviour of DFIG based WTSs during normal operation. 
Most existing structures widely used a traditional vector 
command (VC) based on stator flux orientation or a stator 
voltage orientation. In [2] VC commands is the most popular 
technique used in the doubly fed induction generator-based 
WTSs. On the other hand, the VC command is a simple 
command scheme and easy implement. The VC command 
needs accurate values of DFIG parameters and rotor speed. 
This command gives more total harmonic distortion (THD) 
of rotor current, powers ripples, stator flux and 

electromagnetic torque.  
The conventional command strategy of doubly fed 

induction generator-based WTS is the indirect vector control 
(IVC) and direct vector control (DVC), where the reactive 
and active powers of doubly fed induction generator are 
controlled using current controller blocks [3]. In this article, 
we propose to command stator active and reactive powers of 
a DFIG by using a DVC command. This command is a 
simple command scheme and easy to implement. However, 
this command gives more rotor current ripple, stator flux 
ripple and electromagnetic torque ripple. 

For robust and high-performance DVC, a sliding mode 
controller (SMC) was proposed to command stator active 
power and stator reactive power of a doubly fed induction 
generator [4, 5]. This strategy was proposed by Utkin in 
1974 [6]. This technique is one of the nonlinear strategies. It 
is a particular operation mode of variable structure command 
systems [7]. Since the robustness is the best advantage of the 
SMC technique. However, the SMC strategy has a major 
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inconvenience which the chattering effect is created by the 
discontinuous part of the command. In order to resolve this 
problem, various adjustments to the usual command law 
have been discussed. The approach based on the boundary 
layer is applied in almost all cases. Another efficiency 
solution consists to substitute the discontinuous command 
signal by fuzzy logic (FL) one has also been used recently in 
some research works [8-9]. FL controller and SMC technique 
are combined to command DFIG [10]. 

Since the space vector modulation (SVM) technique is 
widely used in command AC machine. This strategy is based 
on the representation of the voltage vector in a rotating 
complex frame [11]. However, this strategy is detailed in 
[12-14]. In addition, this strategy is difficult to implement. 
To overcome this disadvantages an SVM technique is 
proposed based on calculating of maximum and minimum of 
three-phase voltages. The proposed SVM technique is a 
simple scheme and easy to implement. In this paper, we 
propose a new SVM technique for three-level inverter based 
on calculating the min and max of three-phase voltages. 

In our paper, two different command schemes will be 
compared with each other. These schemes are DVC 
command using three-level SVM strategy and FSMC using 
three-level SVM inverter. The proposed commands schemes 
are described clearly and simulation results are reported to 
demonstrate its effectiveness. The used command schemes 
are implemented in Matlab software. 

 

 

 

 

 

 

 

 

 

Fig. 1. Three-level SVM strategy. 
 

Fig. 2 represents the block diagram of the hysteresis 
comparators for five-level inverter. 

	
Fig. 2. Block diagram of the hysteresis comparators. 

2. Three-level space vector modulation 

The SVM strategy is a kind of a modulation scheme 
with a superior performance compared to classical 
pulse width modulation (PWM) and third harmonic 
injection PWM (THIPWM) for the inverter-command 
applications. In the traditional SVM technique, it is 
always necessary to perform many trigonometric 
operations and coordinate matrix transformations to 
determine the sector position of the equivalent voltage 
space vector [15]. For simple and high-performance 
SVM, a new SVM technique was studied in the 
literature [16, 17]. This proposed SVM is a simple 
scheme, easy to implement and give more THD value 
of stator current of a DFIG-based WTSs. 

In this article, we proposed a new space vector 
modulation for the three-level inverter. These proposed 
modulations based on calculating of maximum (max) 
and minimum (min) of three voltages. The advantages 
of the proposed SVM strategy is not needed to calculate 
the sector and angle, easy to implement and gives a 
strong performance for the real-time feedback 
command compared with classical SVM strategy.    
Fig. 1 shows the principle of the SVM technique of 
three-level inverter. 

 

 

 

 

 

 

 

 

 

3. The DFIG model 

The traditional electrical equations of the doubly fed 
induction generator in the Park frame are written as 
follows [18, 19]: 
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The reactive and active powers at the stator can be 
expressed as: 
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The torque is expressed as: 
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Fig. 3. DVC command with SVM inverter. 

4.2 Fuzzy sliding mode controller (FSMC) 
In command systems, fuzzy sliding mode control 

(FSMC) is a modification of an SMC strategy. This strategy  
minimizes   more   and   more   the   chattering phenomenon. 

 

Vdr, Vqr, Vqs and Vds, are the two-phase rotor and stator 
voltages, Idr, Iqr, Ids and Iqs, are the two-phase rotor and 
stator currents, ψdr, ψqr, ψds and ψqs, are the two-phase 
rotor and stator fluxes, Lr, Ls and M are respectively the 
inductance own rotor, stator, and the mutual inductance 
between two coils, Rr and Rs are respectively the 
resistances of the rotor and stator windings. 
Tr is the load torque, Te is the electromagnetic torque, 
Ω is the mechanical rotor speed, J is the inertia,  f is the 
viscous friction coefficient and p is the number of pole 
pairs. 
Ps is the active power, Qs is the stator reactive power. 

4. Command techniques of the DFIG 

In this part, comparison of doubly fed induction 
generator performances using different command 
schemes: direct vector control (DVC) with three-level 
SVM (3L-SVM) and fuzzy sliding mode controller 
(FSMC) with 3L-SVM. 

4.1 Direct vector control (DVC) 
The principle of DVC command is detailed in [20, 

21]. This command is a simple scheme and easy to 
implement. However, the major disadvantage of the 
DVC command is the ripple powers and harmonic 
distortion of stator current. To eliminate these 
drawbacks, a DVC-SVM is proposed in this article. 
The structure of DVC-SVM of a doubly fed induction 
generator is shown in Fig. 3. However, the internal 
structure of DVC is shown in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

On the other hand, this strategy reduces the powers 
ripples and the THD value of rotor current for DFIG-based 
WTSs. In this strategy the switching controller term sat 
(S(x)), has been replaced by a fuzzy command input as given 
below. 
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The proposed FSMC command, which is designed to 
command the stator reactive and active powers of the doubly 
fed induction generator, is shown in Fig. 5.  

 

 

 

 

 

 

 

 

 

 

Fig. 4. Structure of DVC command scheme. 
 

 

Fig. 5. Bloc diagram of the DFIG command with FSMC. 

Table 1.  The fuzzy logic rules of hysteresis comparators. 
 

e NB NM NS EZ PS PM PB 
∆e 

NB NB NB NB NB NM NS EZ 
NM NB NB NB NM NS EZ PS 
NS NB NB NM NS EZ PS PM 
EZ NB NM NS EZ PS PM PB 
PS NM NS EZ PS PM PB PB 
PM NS EZ PS PM PB PB PB 
PB EZ PS PM PB PB PB PB 
 
Table 2 shows the parameters of fuzzy controllers. 

For the two proposed FSMC in Fig. 5, the universes of 
discourses are first partitioned into the 7 linguistic variables 
NB, NM, NS, EZ, PS, PM, PB, triangular membership 
functions are chosen to represent the linguistic variables and 
fuzzy singletons for the outputs are used. The fuzzy rules that 
produce these command actions are reported in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Parameters of fuzzy controller 
 

Fis type Mamdani 
And method Min 
Or method Max 
Implication Min 
Aggregation Max 
Defuzzification Centroid  

 

The membership function definition for the input 
variables and output membership is given by Fig. 6. 
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The structure of DVC-SVM of a doubly fed induction 
generator is shown in Fig. 7. 

 

 

Fig. 6. Fuzzy sets and its memberships functions. 

Fig. 7. FSMC command with SVM strategy. 

5. Simulation results 

In this part, simulations are carried out with a 1.5MW 
doubly fed induction generator attached to a 398V/50Hz 
grid, using the Matlab/Simulink. Two command schemes, 
DVC-3L-SVM and FSMC-3L-SVM, are simulated and 
compared regarding powers ripples, reference tracking, rotor 
current harmonics distortion, and robustness against DFIG 
parameter variations. 

The DFIG used in this case study is a 1.5MW, 380/696V, 
two poles, 50Hz; with the following parameters: Rs = 
0.012Ω, Rr = 0.021Ω, Ls = 0.0137H, Lr = 0.0136H and    Lm 
= 0.0135H. 

The system has the following mechanical parameters:      
J = 1000 kg.m2, fr = 0.0024 Nm.s/rad. 
 
5.1 Reference tracking test (RTT) 

Figs. 14-15 show the harmonic spectrums of one phase 
rotor current of the 1.5MW DFIG for DVC-3L-SVM and 
FSMC-3L-SVM one respectively. Table 3 shows the 
comparative analysis of THD value. It can be clearly 
observed that the THD is minimized for FSMC-3L-SVM 
command (THD = 0.37%) when compared to DVC-3L-SVM 
(THD = 3.04%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figs. 8-10 show the obtained simulation results. For the 
two command schemes, the stator active and stator reactive 
power tracks almost perfectly their references values. 
Moreover, the FSMC-3L-SVM command minimized the 
powers ripples and torque ripple compared to the DVC-3L-
SVM command (See Figs. 11-113).      
 

Table 3. Comparative analysis of THD value (RTT) 
 

 THD (%) 
 DVC-3L-SVM FSMC-3L-SVM 
Rotor current 3.04 0.37 
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Fig. 8. Active power (RTT).                                               
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Fig. 9. Reactive power (RTT). 
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Fig. 10. Torque (RTT). 

 

1.18 1.19 1.2 1.21 1.22 1.23

-15

-10

-5

0

x 104

Time (s)

A
c
ti
v
e
 p

o
w

e
r 

P
s
(W

)

 

 

0.435 0.44 0.445 0.45 0.455 0.46 0.465 0.47 0.475 0.48 0.485
4.2
4.4
4.6
4.8

5
5.2

x 105

Time (s)

R
e
a
c
ti
v
e
 p

o
w

e
r 

Q
s
 (

V
A

R
)

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-2000

-1000

0

1000

2000

Time (s)

S
ta

to
r 

c
u
rr

e
n
t 

(A
)

0.852 0.853 0.854 0.855 0.856 0.857 0.858 0.859

-2100

-2000

-1900

-1800

Time (s)

T
o
rq

u
e
 T

e
 (

N
.m

)

 

 

Ps (DVC-3L-SVM)
Ps (FSMC-3L-SVM)
Psref

Qs (DVC-3L-SVM)
Qs (FSMC-3L-SVM)
Qsref

Te (DVC-3L-SVM)
Te (FSMC-3L-SVM)

 

Fig. 11. Zoom in the active power (RTT).   
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Fig. 12. Zoom in the reactive power (RTT). 
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Fig. 13. Zoom in the torque (RTT). 
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Fig. 14. THD of one phase rotor current for  DVC-3L-SVM 
control (RTT).        
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Fig. 15. THD of one phase rotor current for  FSMC-3L-SVM 
control (RTT). 
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 5.2 Robustness test (RT) 

In this section, the nominal value of the Rr and Rs is 
multiplied by 2, the values of inductances Ls, M, and Lr are 
multiplied by 0.5. Simulation results are presented in Figs. 
16-23. As it’s shown by these Figures, these variations 
present a clear effect on the active power, stator reactive 
power, and electromagnetic torque curves and that the effect 
appears more important for the DVC-3L-SVM command 
compared to FSMC-3L-SVM command (See Figs. 19-21). 
On the other hand, the THD value of rotor current in the 
FSMC-3L-SVM has been minimized significantly (See Figs 
22-23). Thus it can be concluded that the FSMC-3L-SVM 
command is more robust than the DVC-3L-SVM command. 
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 Fig. 16. Active power (RT). 
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Fig. 17. Reactive power (RT). 
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Fig. 18. Torque (RT). 
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Fig. 19. Zoom in the active power (RT).     
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Fig. 20. Zoom in the reactive power (RT). 
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Fig. 21. Zoom in the torque (RT). 
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 Fig. 22. THD of one phase rotor current for                                                  
DVC-3L-SVM control (RT).                                                                                
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 Fig. 23. THD of one phase rotor current for FSMC-3L-SVM 
control (RT). 

 6. Conclusion 

This work presents simulation results of direct vector 
control and the fuzzy sliding mode control for reactive and 
stator active power command of a doubly fed induction 
generator, using the new modulation technique of space 
vector modulation inverter. With results obtained from the 
simulation, it was clear that for the similar operation 
conditions, the doubly fed induction generator reactive and 
active power command with FSMC command using three-
level SVM strategy had better performance than the DVC 
command with three-level  and that is clear in the harmonic 
distortion of phase rotor current which the use of the FSMC 
with three-level SVM, it is minimizes of harmonics more and 
more than DVC with three-level SVM strategy. 
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