Evolutionary Approaches to Fog Node Placement in LV Distribution Networks

Gilbert M. Gilbert, Naiman Shililiandumi, Honest Kimaro

Abstract


Smart grids merge intelligent computing technologies and electrical grid networks for better monitoring, control and management of electrical energy and facilities. The maturity of cloud computing has been the major driving factor for its adoption in smart grid deployments. Despite the elasticity of cloud resources, centrality and long distances to remote data centers cause high latency, high bandwidth consumptions and unstable connectivity, which are undesirable for IoT-based smart grid applications. Fog computing as an extension of cloud computing services to the edges of the network overcomes these challenges and perfectly suit the distributed nature of the low voltage (LV) electrical distribution networks as part of smart grid. The pressing issues with the adoption of fog computing for smart grid applications are finding the best placement plan for fog node locations in LV distribution networks to enhance monitoring and control. The main goal of this work is to present a mathematical model to address the aforementioned issues focusing on minimizing deployment cost and network delay. In addressing this multi-objective problem, a new algorithm, namely Future Search Particle Swarm Non-dominated Sorting Genetic Algorithm (FPNSGA), is proposed based on the combination of the best features of the NSGA-II, SMPSO, and a recently formed algorithm, Future Search. The effectiveness of the algorithm is evaluated based on the benchmarking technique (Weighted Sum approach), the convergence and diversification of the solutions using HV indicators and CPU time. The results from simulations show that the proposed mechanism is very competitive and outperforms other fog planning network schemes.

Full Text:

PDF

References


G.M. Gilbert, S. Naiman, H. Kimaro, N. Mvungi: “A Cloud-Fog Based System Architecture for Enhancing Fault Detection in Electrical Secondary Distribution Network.” In: Pandian, A.P., Palanisamy, R., and Ntalianis, K. (eds.) Proceeding of the International Conference on Computer Networks, Big Data and IoT (ICCBI - 2019). pp. 845–855. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-43192-1_92.

D. Mnyanghwalo, S. Kawambwa, R. Mwifunyi, G.M. Gilbert, D. Makota, N. Mvungi: “Fault Detection and Monitoring in Secondary Electric Distribution Network Based on Distributed Processing.” In: 2018 20th International Middle East Power Systems Conference, MEPCON 2018 - Proceedings. pp. 84–89 (2019). https://doi.org/10.1109/MEPCON.2018.8635141.

H. Daki, A. El Hannani, A. Aqqal, A. Haidine, A. Dahbi: “Big Data management in smart grid: concepts, requirements and implementation.” J. Big Data. 4, 1–19 (2017). https://doi.org/10.1186/s40537-017-0070-y.

S. Bera, S. Misra, J.J.P.C. Rodrigues: “Cloud Computing Applications for Smart Grid: A Survey.” IEEE Trans. Parallel Distrib. Syst. 26, 1477–1494 (2015). https://doi.org/10.1109/TPDS.2014.2321378.

Y. Allahvirdizadeh, M.P. Moghaddam, H. Shayanfar: “A survey on cloud computing in energy management of the smart grids.” Int. Trans. Electr. Energy Syst. 29, (2019). https://doi.org/10.1002/2050-7038.12094.

F. Bonomi, R. Milito, J. Zhu, S. Addepalli: “Fog computing and its role in the internet of things.” In: Proceedings of the first edition of the MCC workshop on Mobile cloud computing - MCC ’12. p. 13. ACM, NY, USA (2012). https://doi.org/10.1145/2342509.2342513.

A. Yousefpour … J.P. Jue: “All one needs to know about fog computing and related edge computing paradigms: A complete survey.” J. Syst. Archit. 98, 289–330 (2019). https://doi.org/10.1016/j.sysarc.2019.02.009.

S.N. Saxena: “Smart Distribution Grid – and How to Reach the Goal.” Int. J. Smart Grid - ijSmartGrid. 3, 188–200 (2019).

A. Estebsari, E. Pons, E. Bompard, A. Bahmanyar, S. Jamali: “An improved fault location method for distribution networks exploiting emerging LV smart meters.” In: EESMS 2016 - 2016 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems, Proceedings. pp. 1–6. IEEE (2016). https://doi.org/10.1109/EESMS.2016.7504815.

S. Jamali, A. Bahmanyar, E. Bompard: “Fault location method for distribution networks using smart meters.” Meas. J. Int. Meas. Confed. 102, 150–157 (2017). https://doi.org/10.1016/j.measurement.2017.02.008.

A. Stanimirovi?, M. Bogdanovi?, M. Frtuni?, L. Stoimenov: “Low-voltage electricity network monitoring system: Design and production experience.” Int. J. Distrib. Sens. Networks. 16, 155014772090362 (2020). https://doi.org/10.1177/1550147720903629.

OpenFog Consortium Architecture Working Group: “OpenFog Architecture Overview.” OpenFogConsortium. 1–35 (2016).

E. Balevi, R.D. Gitlin: “Optimizing the Number of Fog Nodes for Cloud-Fog-Thing Networks.” IEEE Access. 6, 11173–11183 (2018). https://doi.org/10.1109/ACCESS.2018.2808598.

Z. He, Y. Zhang, B. Tak, L. Peng: “Green Fog Planning for Optimal Internet-of-Thing Task Scheduling.” IEEE Access. 8, 1224–1234 (2020). https://doi.org/10.1109/ACCESS.2019.2961952.

F. Haider, D. Zhang, M. St-Hilaire, C. Makaya: On the Planning and Design Problem of Fog Computing Networks. (2018).

D. Zhang, F. Haider, M. St-Hilaire, C. Makaya: “Model and Algorithms for the Planning of Fog Computing Networks.” IEEE Internet Things J. 6, 3873–3884 (2019). https://doi.org/10.1109/JIOT.2019.2892940.

A. Yousefpour … J.P. Jue: “FOGPLAN: A lightweight QoS-aware dynamic fog service provisioning framework.” IEEE Internet Things J. 6, 5080–5096 (2019). https://doi.org/10.1109/JIOT.2019.2896311.

G. Premsankar, B. Ghaddar, M. Di Francesco, R. Verago: “Efficient Placement of Edge Computing Devices for Vehicular Applications in Smart Cities.” NOMS 2018 - 2018 IEEE/IFIP Netw. Oper. Manag. Symp. 1–9.

A. Santoyo-González, C. Cervelló-Pastor: “Latency-aware cost optimization of the service infrastructure placement in 5G networks.” J. Netw. Comput. Appl. 114, 29–37 (2018). https://doi.org/10.1016/j.jnca.2018.04.007.

I. Gravalos, P. Makris, K. Christodoulopoulos, E.A. Varvarigos: “Efficient Network Planning for Internet of Things with QoS Constraints.” IEEE Internet Things J. 5, 3823–3836 (2018). https://doi.org/10.1109/JIOT.2018.2849327.

A. Santoyo-Gonzalez, C. Cervello-Pastor: “Edge Nodes Infrastructure Placement Parameters for 5G Networks.” 2018 IEEE Conf. Stand. Commun. Networking, CSCN 2018. 1–6 (2018). https://doi.org/10.1109/CSCN.2018.8581749.

S. Mondal, G. Das, E. Wong: “An Analytical Cost-Optimal Cloudlet Placement Framework over Fiber-Wireless Networks with Quasi-Convex Latency Constraint.” Electronics. 8, 404 (2019). https://doi.org/10.3390/electronics8040404.

ETSI: “ETSI GS MEC-IEG 006 ; Mobile Edge Computing ; Market Acceleration ; MEC Metrics Best Practice and Guidelines.” Etsi. 1, 1–29 (2017).

I. Goiri, K. Le, J. Guitart, J. Torres, R. Bianchini: “Intelligent Placement of Datacenters for Internet Services.” In: 2011 31st International Conference on Distributed Computing Systems. pp. 131–142. IEEE (2011). https://doi.org/10.1109/ICDCS.2011.19.

W. Zhang, B. Lin, Q. Yin, T. Zhao: “Infrastructure deployment and optimization of fog network based on MicroDC and LRPON integration.” Peer-to-Peer Netw. Appl. 10, 579–591 (2017). https://doi.org/10.1007/s12083-016-0476-x.

D. Celik Turkoglu, M. Erol Genevois: “A comparative survey of service facility location problems.” Ann. Oper. Res. 292, 399–468 (2020). https://doi.org/10.1007/s10479-019-03385-x.

T. Vanhatupa, M. Hannikainen, T.D. Hamalainen: “Genetic Algorithm to Optimize Node Placement and Configuration for WLAN Planning.” In: 2007 4th International Symposium on Wireless Communication Systems. pp. 612–616. IEEE (2007). https://doi.org/10.1109/ISWCS.2007.4392413.

S.C. Ho: “An iterated tabu search heuristic for the Single Source Capacitated Facility Location Problem.” Appl. Soft Comput. 27, 169–178 (2015). https://doi.org/10.1016/j.asoc.2014.11.004.

G. Chugulu, F. Simba, S. Lujara: “Proposed Practical Communication Architecture for Automatic Fault Detection and Clearance in Secondary Distribution Power Network.” Int. J. Smart Grid - ijSmartGrid. Vol. 4, pp. 164-175, (2020).

N. Gunantara: “A review of multi-objective optimization: Methods and its applications.” Cogent Eng. 5, 1–16 (2018). https://doi.org/10.1080/23311916.2018.1502242.

M.T.M. Emmerich, A.H. Deutz: “A tutorial on multiobjective optimization: fundamentals and evolutionary methods.” Nat. Comput. 17, 585–609 (2018). https://doi.org/10.1007/s11047-018-9685-y.

M. Elsisi: “Future search algorithm for optimization.” Evol. Intell. 12, 21–31 (2019). https://doi.org/10.1007/s12065-018-0172-2.

M. Elsisi, M. Soliman: “Optimal design of robust resilient automatic voltage regulators.” ISA Trans. (2020). https://doi.org/10.1016/j.isatra.2020.09.003.

K. Deb, A. Pratap, S. Agarwal, T. Meyarivan: “A fast and elitist multiobjective genetic algorithm: NSGA-II.” IEEE Trans. Evol. Comput. 6, 182–197 (2002). https://doi.org/10.1109/4235.996017.

J. OuYang, F. Yang, S.W. Yang, Z.P. Nie: “The improved NSGA-II approach.” J. Electromagn. Waves Appl. 22, 163–172 (2008). https://doi.org/10.1163/156939308784160703.

A.J. Nebro, J.J. Durillo, G. Nieto, C.A.C. Coello, F. Luna, E. Alba: “SMPSO: A new pso-based metaheuristic for multi-objective optimization.” In: 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making, MCDM 2009 - Proceedings. pp. 66–73. IEEE (2009). https://doi.org/10.1109/MCDM.2009.4938830.

J.J. Durillo, A.J. Nebro: “JMetal: A Java framework for multi-objective optimization.” Adv. Eng. Softw. 42, 760–771 (2011). https://doi.org/10.1016/j.advengsoft.2011.05.014.

E. Zitzler, L. Thiele: “Multiobjective optimization using evolutionary algorithms - A comparative case study.” In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 292–301 (1998). https://doi.org/10.1007/bfb0056872.

N. Padhye, K. Deb: “Multi-objective Optimisation and Multi-criteria Decision Making for FDM Using Evolutionary Approaches.” In: Multi-objective Evolutionary Optimisation for Product Design and Manufacturing. pp. 219–247. Springer London, London (2011). https://doi.org/10.1007/978-0-85729-652-8_7.




DOI (PDF): https://doi.org/10.20508/ijsmartgrid.v5i1.141.g134

Refbacks

  • There are currently no refbacks.


www.ijsmartgrid.com; www.ijsmartgrid.org

ilhcol@gmail.com; ijsmartgrid@nisantasi.edu.tr

Online ISSN: 2602-439X

Publisher: ilhami COLAK (istanbul Nisantasi Univ)

Cited in Google Scholar and CrossRef