Direct Reactive and Active Power Regulation of DFIG using an Intelligent Modified Sliding-Mode Control Approach

Habib Benbouhenni, Hamza Gasmi, Nicu Bizon

Abstract


This work presents a novel direct reactive and active power control (DRAPC) of grid-connected doubly-fed induction generator (DFIG)-based dual-rotor wind power systems. The designed DRAPC technique employs an intelligente modified sliding mode controller (IMSMC) to directly calculate the required rotor control voltage so as to eliminate the power ripples and the instantaneous errors of reactive and active powers without involving any synchronous coordinate transformations. Thus, no extra current control loops are required, thereby simplifying the system design and enhancing the transient performance. The rotor inverter is controlled by traditional pulse width modulation, which eases the designs of the power converter and the AC harmonic filter. Simulation results on a 1.5-MW grid-connected DFIG system are provided and compared with those of the traditional DRAPC with proportional-integral controllers. The designed DRAPC technique provides enhanced transient performance similar to the traditional DRAPC technique and minimizes the current, active power, and torque ripples.

Keywords


Direct reactive and active power control, intelligente modified sliding-mode controller, doubly-fed induction generator, pulse width modulation, dual-rotor wind power system.

Full Text:

PDF

References


T. Surinkaew and I. Ngamroo, « Coordinated Robust Control of DFIG Wind Turbine and PSS for Stabilization of Power Oscillations Considering System Uncertainties, » in IEEE Transactions on Sustainable Energy, Vol. 5, No. 3, pp. 823-833, July 2014, doi: 10.1109/TSTE.2014.2308358.

I. Alkalbani and F. M. Guangul, « Economical Evaluation of Energy Harvesting Using Vertical Axis Wind Turbine from a Wind Turbulence Created by Moving Cars, » 2021 International Conference on Smart City and Green Energy (ICSCGE), 2021, pp. 26-29, doi: 10.1109/ICSCGE53744.2021.9654414.

J. R. de Oliveira and A. L. Andreoli, « Wind Turbine Emulator: A Tool for Experimental and Computational Study, » in IEEE Latin America Transactions, Vol. 19, No. 11, pp. 1832-1839, Nov. 2021, doi: 10.1109/TLA.2021.9475616.

L. Jia, J. Ma, P. Cheng and Y. Liu, « A perspective on solar energy-powered road and rail transportation in China, » in CSEE Journal of Power and Energy Systems, Vol. 6, No. 4, pp. 760-771, Dec. 2020, doi: 10.17775/CSEEJPES.2020.02040.

A. S. Al-Sumaiti, A. K. Banhidarah, J. L. Wescoat, A. K. Bamigbade and H. t. Nguyen, « Data Collection Surveys on the Cornerstones of the Water-Energy Nexus: A Systematic Overview, » in IEEE Access, Vol. 8, pp. 93011-93027, 2020, doi: 10.1109/ACCESS.2020.2995054.

E. A. Bekirov, S. N. Voskresenskaya, M. M. Asanov and E. R. Murtazaev, « Analysis of the Sea Waves Energy Characteristics in the Black Sea Region, » 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), 2020, pp. 1-4, doi: 10.1109/FarEastCon50210.2020.9271464.

J. E. Sierra-García and M. Santos, « Improving Wind Turbine Pitch Control by Effective Wind Neuro-Estimators, » in IEEE Access, Vol. 9, pp. 10413-10425, 2021, doi: 10.1109/ACCESS.2021.3051063.

Z. -C. Zou, X. -Y. Xiao, Y. -F. Liu, Y. Zhang and Y. -H. Wang, « Integrated Protection of DFIG-Based Wind Turbine With a Resistive-Type SFCL Under Symmetrical and Asymmetrical Faults, » in IEEE Transactions on Applied Superconductivity, Vol. 26, No. 7, pp. 1-5, Oct. 2016, Art no. 5603005, doi: 10.1109/TASC.2016.2574352.

Y. Cui, P. Song, X. S. Wang, W. X. Yang, H. Liu and H. M. Liu, « Wind Power Virtual Synchronous Generator Frequency Regulation Characteristics Field Test and Analysis, » 2018 2nd International Conference on Green Energy and Applications (ICGEA), 2018, pp. 193-196, doi: 10.1109/ICGEA.2018.8356309.

J. Y. Jin, M. S. Virk, Q. Hu and X. Jiang, « Study of Ice Accretion on Horizontal Axis Wind Turbine Blade Using 2D and 3D Numerical Approach, » in IEEE Access, Vol. 8, pp. 166236-166245, 2020, doi: 10.1109/ACCESS.2020.3022458.

J. Xie et al., « Characteristics Simulation Method of Megawatt Three-Blade Horizontal Axis Wind Turbine Based on Laboratory Kilowatt Low-Power Motor System, » in IEEE Transactions on Industry Applications, Vol. 58, No. 1, pp. 645-655, Jan.-Feb. 2022, doi: 10.1109/TIA.2021.3123116.

C. J. Li, R. Bhalla and H. Ling, « Investigation of the Dynamic Radar Signatures of a Vertical-Axis Wind Turbine, » in IEEE Antennas and Wireless Propagation Letters, Vol. 14, pp. 763-766, 2015, doi: 10.1109/LAWP.2014.2377693.

A. Molina-García, A. Fernández-Guillamón, E. Gómez-Lázaro, A. Honrubia-Escribano and M. C. Bueso, « Vertical Wind Profile Characterization and Identification of Patterns Based on a Shape Clustering Algorithm, » in IEEE Access, Vol. 7, pp. 30890-30904, 2019, doi: 10.1109/ACCESS.2019.2902242.

O. Beik and A. S. Al-Adsani, « Active and Passive Control of a Dual Rotor Wind Turbine Generator for DC Grids, » in IEEE Access, Vol. 9, pp. 1987-1995, 2021, doi: 10.1109/ACCESS.2020.3047267.

I. Sami, S. Ullah, L. Khan, A. Al-Durra, J. -S. Ro, « Integer and Fractional-Order Sliding Mode Control Schemes in Wind Energy Conversion Systems: Comprehensive Review, Comparison, and Technical Insight, » Fractal Fract., Vol. 6, 447, 2022. https://doi.org/10.3390/fractalfract6080447.

L. H. Zheng, X. Q. Li and J. X. Jin, « Characteristic Analysis of High Temperature Superconducting Wind Turbine Generator, » 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), 2020, pp. 1-2, doi: 10.1109/ASEMD49065.2020.9276203.

S. Sharma and B. Singh, « Asynchronous Generator With Battery Storage for Standalone Wind Energy Conversion System, » in IEEE Transactions on Industry Applications, Vol. 50, No. 4, pp. 2760-2767, July-Aug. 2014, doi: 10.1109/TIA.2013.2295475.

K. Shi, W. Song, H. Ge, P. Xu, Y. Yang and F. Blaabjerg, « Transient Analysis of Microgrids With Parallel Synchronous Generators and Virtual Synchronous Generators, » in IEEE Transactions on Energy Conversion, Vol. 35, No. 1, pp. 95-105, March 2020, doi: 10.1109/TEC.2019.2943888.

D. H. Wang, C. V. Nayar and C. Wang, « Modeling of stand-alone variable speed diesel generator using doubly-fed induction generator, » The 2nd International Symposium on Power Electronics for Distributed Generation Systems, 2010, pp. 1-6, doi: 10.1109/PEDG.2010.5545769.

T. Suzuki, H. Okitsu, T. Kawahito, « Characteristics of a small wind-power system with DC generator, » IEE Proc. -Electr. Power Appl., Vol. 129, pp. 217-220, 1982.

Y. Bakou et al., « DTC Control of the DFIG, Application to the Production of Electrical Energy, » 2019 8th International Conference on Renewable Energy Research and Applications (ICRERA), 2019, pp. 910-915, doi : 10.1109/ICRERA47325.2019.8996947.

M. El Azzaoui, H. Mahmoudi and C. Ed-dahmani, « Backstepping control of a Doubly Fed Induction Generator integrated to wind power system, » 2016 International Conference on Electrical and Information Technologies (ICEIT), 2016, pp. 306-311, doi : 10.1109/EITech.2016.7519611.

H. Benbouhenni, « Synergetic control theory scheme for asynchronous generator based dual-rotor wind power, » Journal of Electrical Engineering, Electronics, Control and Computer Science, Vol.7, No.3, pp.19-28, 2021.

H. Benbouhenni, «A comparison study between fuzzy PWM and SVM inverter in NSMC control of stator active and reactive power control of a DFIG based wind turbine systems, » International Journal of Applied Power Engineering (IJAPE), Vol. 8, No. 1, pp. 78-92, 2019.

H. Benbouhenni, Z. Boudjema, A. Belaidi, «DPC based on ANFIS super-twisting sliding mode algorithm of a doubly-fed induction generator for wind energy system, » Journal Européen des Systèmes Automatisés, Vol. 53, No. 1, pp. 69-80, February, 2020.

J. Mohammadi, S. Vaez-Zadeh, S. Afsharnia and E. Daryabeigi, « A Combined Vector and Direct Power Control for DFIG-Based Wind Turbines, » in IEEE Transactions on Sustainable Energy, Vol. 5, No. 3, pp. 767-775, July 2014, doi : 10.1109/TSTE.2014.2301675.

S. Salem, A. Rabeh, A. Nesrine, C. Souad, « Passivity-Based Direct power control of Shunt Active Filter under Distorted Grid Voltage Conditions, » Automatika, 2016, Vol. 57, No. 2, pp. 361-371, 2016. DOI : 10.7305/automatika.2016.10.1011.

M. Valikhani and C. Sourkounis, « Improvements on robustness of hysteresis-based vector control of DFIG using brain emotional leaning-based intelligent controller (BELBIC), » 2014 Ninth International Conference on Ecological Vehicles and Renewable Energies (EVER), 2014, pp. 1-5, doi: 10.1109/EVER.2014.6844084.

J. Erazo-Damián, J. M. Apsley, R. Perini, M. F. Iacchetti and G. D. Marques, « Stand-Alone DFIG FOC Sensitivity and Stability Under Mismatched Inductances, » in IEEE Transactions on Energy Conversion, Vol. 34, No. 2, pp. 860-869, June 2019, doi: 10.1109/TEC.2018.2869286.

J. Hu, H. Nian, B. Hu, Y. He and Z. Q. Zhu, « Direct Active and Reactive Power Regulation of DFIG Using Sliding-Mode Control Approach, » in IEEE Transactions on Energy Conversion, Vol. 25, No. 4, pp. 1028-1039, Dec. 2010, doi: 10.1109/TEC.2010.2048754.

B. Hu, H. Nian, J. Yang, M. Li and Y. Xu, « High-Frequency Resonance Analysis and Reshaping Control Strategy of DFIG System Based on DPC, » in IEEE Transactions on Power Electronics, Vol. 36, No. 7, pp. 7810-7819, July 2021, doi: 10.1109/TPEL.2020.3045860.

R. M. Prasad and M. A. Mulla, « Rotor Position-Sensorless Algorithms for Direct Power Control of Rotor-Tied DFIG, » in IEEE Transactions on Power Electronics, Vol. 36, No. 6, pp. 6213-6217, June 2021, doi: 10.1109/TPEL.2020.3040705.

X. Wang, D. Sun and Z. Q. Zhu, « Resonant-Based Backstepping Direct Power Control Strategy for DFIG Under Both Balanced and Unbalanced Grid Conditions, » in IEEE Transactions on Industry Applications, Vol. 53, No. 5, pp. 4821-4830, Sept.-Oct. 2017, doi: 10.1109/TIA.2017.2700280.

Y. Zhang, J. Jiao, D. Xu, « Direct Power Control of Doubly Fed Induction Generator Using Extended Power Theory Under Unbalanced Network, » in IEEE Transactions on Power Electronics, Vol. 34, No. 12, pp. 12024-12037, 2019. doi: 10.1109/TPEL.2019.2906013.

Z. Zhang, F. Wang, J. Wang, J. Rodríguez and R. Kennel, « Nonlinear Direct Control for Three-Level NPC Back-to-Back Converter PMSG Wind Turbine Systems: Experimental Assessment With FPGA, » in IEEE Transactions on Industrial Informatics, Vol. 13, No. 3, pp. 1172-1183, June 2017, doi: 10.1109/TII.2017.2678500.

H. Kong, J. He, Y. Liu, P. Cheng and J. Ma, « Improved Direct Power Control of Doubly Fed Induction Generator Without Phase-Locked Loop, » 2020 IEEE Sustainable Power and Energy Conference (iSPEC), 2020, pp. 199-204, doi: 10.1109/iSPEC50848.2020.9351036.

H. Benbouhenni, « Two-level DPC strategy based on FNN algorithm of the DFIG-DRWT systems using two-level hysteresis controllers for reactive and active powers, » Renewable Energy Research and Application (RERA), Vol.2, No.3, pp.137-146, 2021, http://dx.doi.org/10.22044/rera.2021.10694.1053.

M. Pichan, H. Rastegar and M. Monfared, « Fuzzy-based direct power control of doubly fed induction generator-based wind energy conversion systems, » 2012 2nd International Conference on Computer and Knowledge Engineering (ICCKE), 2012, pp. 66-70, doi: 10.1109/ICCKE.2012.6395354.

H. Benbouhenni, « Application of DPC and DPC-GA to the dual-rotor wind turbine system with DFIG, » International Journal of Robotics and Automation, Vol.10, No.3, pp. 224-234, 2021. Doi: 10.11591/ijra.v10i3.pp224-234.

P. Xiong and D. Sun, « Backstepping-Based DPC Strategy of a Wind Turbine-Driven DFIG Under Normal and Harmonic Grid Voltage, » in IEEE Transactions on Power Electronics, vol. 31, no. 6, pp. 4216-4225, June 2016, doi: 10.1109/TPEL.2015.2477442.

H. Benbouhenni, N. Bizon, “Terminal Synergetic Control for direct active and reactive powers in Asynchronous Generator-based Dual-Rotor Wind Power Systems,” Electronics, Vol.10, No.16, pp.1-23, 2021. https://doi.org/10.3390/electronics10161880.

A. Susperregui, M. I. Martínez, G. Tapia-Otaegui and A. Etxeberria, « Sliding-Mode Control Algorithm for DFIG Synchronization to Unbalanced and Harmonically Distorted Grids, » in IEEE Transactions on Sustainable Energy, Vol. 13, No. 3, pp. 1566-1579, July 2022, doi: 10.1109/TSTE.2022.3166217.

S. S. Yu, G. Zhang, T. Fernando and H. H. -C. Iu, « A DSE-Based SMC Method of Sensorless DFIG Wind Turbines Connected to Power Grids for Energy Extraction and Power Quality Enhancement, » in IEEE Access, Vol. 6, pp. 76596-76605, 2018, doi: 10.1109/ACCESS.2018.2883591.

J. Hu, H. Nian, B. Hu, Y. He and Z. Q. Zhu, « Direct Active and Reactive Power Regulation of DFIG Using Sliding-Mode Control Approach, » in IEEE Transactions on Energy Conversion, Vol. 25, No. 4, pp. 1028-1039, Dec. 2010, doi: 10.1109/TEC.2010.2048754.

D. Sun, X. Wang, H. Nian and Z. Q. Zhu, « A Sliding-Mode Direct Power Control Strategy for DFIG Under Both Balanced and Unbalanced Grid Conditions Using Extended Active Power, » in IEEE Transactions on Power Electronics, Vol. 33, No. 2, pp. 1313-1322, Feb. 2018, doi: 10.1109/TPEL.2017.2686980.

L. Shang and J. Hu, « Sliding-Mode-Based Direct Power Control of Grid-Connected Wind-Turbine-Driven Doubly Fed Induction Generators Under Unbalanced Grid Voltage Conditions, » in IEEE Transactions on Energy Conversion, Vol. 27, No. 2, pp. 362-373, June 2012, doi: 10.1109/TEC.2011.2180389.

I. Sami, S. Ullah, S. U. Amin, A. Al-Durra, N. Ullah and J. -S. Ro, « Convergence Enhancement of Super-Twisting Sliding Mode Control Using Artificial Neural Network for DFIG-Based Wind Energy Conversion Systems, » in IEEE Access, Vol. 10, pp. 97625-97641, 2022, doi: 10.1109/ACCESS.2022.3205632.

R. Galindo del Valle, M. Cotorogea Pfeifer and D. Biel Sole, « Two families of sliding mode controllers for a doubly-fed induction generator in an isolated generation system, » in IEEE Latin America Transactions, vol. 5, no. 2, pp. 115-121, May 2007, doi: 10.1109/TLA.2007.4381353.

N. Nasiri and N. Yousefi Lademakhi, « Nonlinear combined SMC-SDRE control versus SMC and SDRE approaches for electrical flexible-joint robots based on optimal observer, » 2021 9th RSI International Conference on Robotics and Mechatronics (ICRoM), 2021, pp. 568-573, doi: 10.1109/ICRoM54204.2021.9663514.

A. Wahyu Aditya, M. Rizani Rusli, B. Praharsena, E. Purwanto, D. Cahya Happyanto and B. Sumantri, « The Performance of FOSMC and Boundary - SMC in Speed Controller and Current Regulator for IFOC-Based Induction Motor Drive, » 2018 International Seminar on Application for Technology of Information and Communication, 2018, pp. 139-144, doi: 10.1109/ISEMANTIC.2018.8549842.

L. Shang and J. Hu, « Sliding-Mode-Based Direct Power Control of Grid-Connected Wind-Turbine-Driven Doubly Fed Induction Generators Under Unbalanced Grid Voltage Conditions, » in IEEE Transactions on Energy Conversion, Vol. 27, No. 2, pp. 362-373, June 2012, doi: 10.1109/TEC.2011.2180389.

H. Benbouhenni, « Sliding mode with neural network regulateur for DFIG using two-level NPWM strategy, » Iranian Journal of Electrical & Electronic Engineering, Vol. 15, No. 3, pp.411-419, 2019.

H. Benbouhenni, Z. Boudjema, N. Bizon, P. Thounthong, N. Takorabet, « Direct Power Control Based on Modified Sliding Mode Controller for a Variable-Speed Multi-Rotor Wind Turbine System Using PWM Strategy, » Energies, Vol. 15, No. 10, 2022. https://doi.org/10.3390/en15103689.

W. Yang, A. Zhang, J. Li, G. Li, H. Zhang, J. Wang, « Integral Plus Resonant Sliding Mode Direct Power Control for VSC-HVDC Systems under Unbalanced Grid Voltage Conditions, » Energies, Vol. 10, 1528, 2017. https://doi.org/10.3390/en10101528.

M. Farida, S. Belkacem and I. Colak, « Fuzzy High Order Sliding Mode Control Based DPC of DFIG using SVM, » 2021 9th International Conference on Smart Grid (icSmartGrid), 2021, pp. 278-282, doi: 10.1109/icSmartGrid52357.2021.9551262.

H. Benbouhenni, N. Bizon, I. Colak, P. Thounthong, N. Takorabet, « Application of Fractional-Order PI Controllers and Neuro-Fuzzy PWM Technique to Multi-Rotor Wind Turbine Systems, » Electronics 2022, 11, 1340. https://doi.org/10.3390/electronics11091340.

H. Benbouhenni, N. Bizon, « Advanced Direct Vector Control Method for Optimizing the Operation of a Double-Powered Induction Generator-Based Dual-Rotor Wind Turbine System, » Mathematics, Vol.9, No.19, 2021, 2297. doi: 10.3390/math9182297.

H. Benbouhenni, N. Bizon, « Third-Order Sliding Mode Applied to the Direct Field-Oriented Control of the Asynchronous Generator for Variable-Speed Contra-Rotating Wind Turbine Generation Systems, » Energies, Vol. 14, No.18, 1-17, 2021. https://doi.org/10.3390/en14185877

H. Benbouhenni, N. Bizon, « Improved Rotor Flux and Torque Control Based on the Third-Order Sliding Mode Scheme Applied to the Asynchronous Generator for the Single-Rotor Wind Turbine, » Mathematics, Vol. 9, No.18, 2297. https://doi.org/10.3390/math9182297.

J. M. Mendel and D. Wu, « Critique of A New Look at Type-2 Fuzzy Sets and Type-2 Fuzzy Logic Systems, » in IEEE Transactions on Fuzzy Systems, vol. 25, no. 3, pp. 725-727, June 2017, doi: 10.1109/TFUZZ.2017.2648882.

L. -X. Wang, « A New Look at Type-2 Fuzzy Sets and Type-2 Fuzzy Logic Systems, » in IEEE Transactions on Fuzzy Systems, Vol. 25, No. 3, pp. 693-706, June 2017, doi: 10.1109/TFUZZ.2016.2543746.

H. Benbouhenni, « Five-level DTC control of induction machine drive using fuzzy logic controller for low torque ripple,» Acta Technica Corviniensis-Bulletin of Engineering, Vol. 12, No. 2, pp. 91-96, 2019.




DOI (PDF): https://doi.org/10.20508/ijsmartgrid.v6i4.266.g252

Refbacks

  • There are currently no refbacks.


www.ijsmartgrid.com; www.ijsmartgrid.org

ilhcol@gmail.com; ijsmartgrid@nisantasi.edu.tr

Online ISSN: 2602-439X

Publisher: ilhami COLAK (istinye Univ)

https://www.ilhamicolak.org/english.htm

Cited in SCOPUS, Google Scholar and CrossRef