Machine Learning Techniques for Solar Power Output Predicting

Khalid Yahya, Samaa Al-mayyahi, Mahmoud Aldababsa, Adel E. M. Yahya, Rebha Daw Sarreb

Abstract


It is a challenge the world has never faced to shift away from energy sources that use fossil fuels and toward ones that are more sustainable and better for the environment.  The development of solar photovoltaic (PV) systems is one of the most exciting developments in the field of renewable energy. However, because these devices operate inconsistently and only occasionally, integrating them into the energy grid presents several significant issues. Recent research examined how artificial intelligence (AI) and machine learning (ML) could be used to enhance the management, control, monitoring, maintenance, and performance of renewable energy systems. The aim of this thesis study is to investigate if it is possible to predict the amount of power that photovoltaic (PV) systems will produce using machine learning long short-term memory (LSTM) neural networks and the Nadam optimizer. A particular kind of neural network that has performed well in time series forecasting is the long short-term memory (LSTM) design. The objective of this research is to develop a new method of weather forecasting that, when used over a time horizon of 24 hours, can produce reliable and precise projections of electricity output. The LSTM models are compared to the SARIMA and ARIMA time series models in the study. In comparison with modern approaches, the Nadam optimizer-based LSTM model provides predictions that are more accurate. In an attempt to enhance accuracy and dependability, the study also looks at how climate impacts predict solar energy. The Nadam optimizer and LSTM are combined in this work to anticipate solar power. The study's conclusions will assist in solar power system optimization, operation, and design, which will increase dependability and profitability. 


Full Text:

PDF

References


World economic forum. (2022). M A Y 2 0 2 2. Fostering Effective Energy Transition 2022 Edition.

Dehghani, Majid, Hossein Riahi-Madvar, Farhad Hooshyaripor, Amir Mosavi, Shahaboddin Shamshirband, Edmundas Kazimieras Zavadskas, and Kwok-wing Chau. 2019. "Prediction of Hydropower Generation Using Grey Wolf Optimization Adaptive Neuro-Fuzzy Inference System" Energies 12, no. 2: 289. https://doi.org/10.3390/en12020289

Deng, B., Peng, D., Zhang, H. & Qian, Y. (2018). An intelligent hybrid short-term load forecasting model optimized by switching delayed PSO of micro-grids. Journal of Renewable and Sustainable Energy, 10(2), 24901. https://doi.org/10.1063/1.5021728/285545

Mosavi, A., Salimi, M., Ardabili, S. F., Rabczuk, T., Shamshirband, S. & Varkonyi-Koczy, A. R. (2019). State of the Art of Machine Learning Models in Energy Systems, a Systematic Review. Energies, 12(7). https://doi.org/10.3390/EN12071301

Anwar, M. B., El Moursi, M. S. & Xiao, W. (2017). Novel Power Smoothing and Generation Scheduling Strategies for a Hybrid Wind and Marine Current Turbine System. IEEE Transactions on Power Systems, 32(2), 1315–1326. https://doi.org/10.1109/TPWRS.2016.2591723

Gers, F. A., Schmidhuber, J. & Cummins, F. (1999a). Learning to forget: Continual prediction with LSTM. IEE Conference Publication, 2(470), 850–855. https://doi.org/10.1049/CP:19991218

Hochreiter, S. & Schmidhuber, J. (1997a). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/NECO.1997.9.8.1735

Basurto, N., Arroyo, Á., Vega, R., Quintián, H., Calvo-Rolle, J. L. & Herrero, Á. (2019). A Hybrid Intelligent System to forecast solar energy production. Computers & Electrical Engineering, 78, 373–387. https://doi.org/10.1016/J.COMPELECENG.2019.07.023

Das, U. K., Tey, K. S., Seyedmahmoudian, M., Mekhilef, S., Idris, M. Y. I., Van Deventer, W., Horan, B. & Stojcevski, A. (2018). Forecasting of photovoltaic power generation and model optimization: A review. Renewable and Sustainable Energy Reviews, 81, 912–928. https://doi.org/10.1016/J.RSER.2017.08.017

Khalid, R. & Javaid, N. (2020). A survey on hyperparameters optimization algorithms of forecasting models in smart grid. Sustainable Cities and Society, 61, 102275. https://doi.org/10.1016/J.SCS.2020.102275

Paliwal, P., Patidar, N. P. & Nema, R. K. (2020). Probabilistic indices for analysing the impact of penetration of distributed energy resources on system reliability. IET Renewable Power Generation, 14(12), 2154–2165. https://doi.org/10.1049/IET-RPG.2019.1214

Santhosh, M., Venkaiah, C. & Vinod Kumar, D. M. (2020). Current advances and approaches in wind speed and wind power forecasting for improved renewable energy integration: A review. Engineering Reports, 2(6). https://doi.org/10.1002/ENG2.12178

Seyedmahmoudian, M., Jamei, E., Thirunavukkarasu, G. S., Soon, T. K., Mortimer, M., Horan, B., Stojcevski, A. & Mekhilef, S. (2018). Short-Term Forecasting of the Output Power of a Building-Integrated Photovoltaic System Using a Metaheuristic Approach. Energies 2018, Vol. 11, Page 1260, 11(5), 1260. https://doi.org/10.3390/EN11051260

Sharadga, H., Hajimirza, S. & Balog, R. S. (2020). Time series forecasting of solar power generation for large-scale photovoltaic plants. Renewable Energy, 150, 797–807. https://doi.org/10.1016/J.RENENE.2019.12.131

Sharma, N., Sharma, P., Irwin, D. & Shenoy, P. (2011). Predicting solar generation from weather forecasts using machine learning. 2011 IEEE International Conference on Smart Grid Communications, SmartGridComm 2011, 528–533. https://doi.org/10.1109/SMARTGRIDCOMM.2011.6102379

VanDeventer, W., Jamei, E., Thirunavukkarasu, G. S., Seyedmahmoudian, M., Soon, T. K., Horan, B., Mekhilef, S. & Stojcevski, A. (2019). Short-term PV power forecasting using hybrid GASVM technique. Renewable Energy, 140, 367–379. https://doi.org/10.1016/J.RENENE.2019.02.087

Vaziri, R., Oladipo, A. A., Sharifpur, M., Taher, R., Ahmadi, M. H. & Issakhov, A. (2021). Efficiency Enhancement in Double-Pass Perforated Glazed Solar Air Heaters with Porous Beds: Taguchi-Artificial Neural Network Optimization and Cost–Benefit Analysis. Sustainability 2021, Vol. 13, Page 11654, 13(21), 11654. https://doi.org/10.3390/SU132111654

Zolghadri, A., Maddah, H., Ahmadi, M. H. & Sharifpur, M. (2021). Predicting parameters of heat transfer in a shell and tube heat exchanger using aluminum oxide nanofluid with artificial neural network (Ann) and self-organizing map (som). Sustainability (Switzerland), 13(16). https://doi.org/10.3390/SU13168824

Fraas, L. (2010). Solar cells, single-crystal semiconductors,and high efficiency. Solar Cells and Their Applications: Second Edition, 43–66. https://doi.org/10.1002/9780470636886.CH3

Eca. (2018). Electricity production from wind and solar photovoltaic power in the EU Background paper.

. Manual de Engenharia para Sistemas Fotovoltaicos – 2014 – Solenerg Energia Solar Fotovoltaica. (n.d.). Retrieved May 16, 2023, from https://www.solenerg.com.br/manual-de-engenharia-para-sistemas-fotovoltaicos-2014/

Wua, J. (2021). Solar power generation. Journal of Nuclear Energy Science and Power Generation Technology, 10(3), 157–169. https://doi.org/10.1007/978-3-030-86884-0_9/FIGURES/5

Hersch, P., Zweibel, K. & Energy Research Institute, S. (n.d.). Basic Photovoltaic Principles and Methods.

Sophie P, Remund J, Kleissl J, Oozeki T, De Brabandere K. Photovoltaic and solar forecasting: state of the art. IEA PVPS, Task. 2013;14(2013):1?36. https://iea-pvps.org/key-topics/photovoltaics-and-solar-forecasting-state-of-art-report-t1401-2013/

Rana M, Koprinska I, Agelidis VG. Univariate and multi-variate methods for very short?term solar photovoltaic power forecasting. Energy Convers Manage. 2016;121:380?390. doi:10. 1016/j.enconman.2016.05.025

Abdel?Nasser M, Mahmoud K. Accurate photovoltaic powerforecasting models using deep LSTM?RNN. Neural Comput Appl. 2019;31(7):2727?2740. doi:10.1007/s00521-017-3225-z

Appl. 2019;31(7):2727?2740. doi:10.1007/s00521-017-3225-z

Lee, W.; Kim, K.; Park, J.; Kim, J.; Kim, Y. Forecasting Solar Power Using Long-Short Term Memory and Convolutional Neural Networks. IEEE Access 2018, 6, 73068–73080.

Jung, Y.; Jung, J.; Kim, B.; Han, S. Long short-term memory recurrent neural network for modeling temporal patterns in long-term power forecasting for solar PV facilities: Case study of South Korea. J. Clean. Prod. 2020, 250, 119476.

Yongsheng, D.; Fengshun, J.; Jie, Z.; Zhikeng, L. A Short-Term Power Output Forecasting Model Based on Correlation Analysis and ELM-LSTM for Distributed PV System. J. Electr. Comput. Eng. 2020, 2020, 1–10.

Gao, M.; Li, J.; Hong, F.; Long, D. Short-Term Forecasting of Power Production in a Large-Scale Photovoltaic Plant Based on LSTM. Appl. Sci. 2019, 9, 3192. [CrossRef]

Mei, F.; Gu, J.; Lu, J.; Lu, J.; Zhang, J.; Jiang, Y.; Shi, T.; Zheng, J. Day-Ahead Nonparametric Probabilistic Forecasting of Photovoltaic Power Generation Based on the LSTM-QRA Ensemble Model. IEEE Access 2020, 8, 166138–166149.




DOI (PDF): https://doi.org/10.20508/ijsmartgrid.v8i2.341.g356

Refbacks

  • There are currently no refbacks.


www.ijsmartgrid.com; www.ijsmartgrid.org

ilhcol@gmail.com; ijsmartgrid@nisantasi.edu.tr

Online ISSN: 2602-439X

Publisher: ilhami COLAK (istinye Univ)

https://www.ilhamicolak.org/english.htm

Cited in SCOPUS, Google Scholar and CrossRef