Photovoltaic System Efficiency Enhancement with Thermal Management: Phase Changing Materials (PCM) with High Conductivity Inserts

Sylevaster KYALIGONZA, Erdal CETKIN

Abstract


Abstract-The electrical conversion efficiency of photovoltaic cells from solar radiation heavily depends on the cell temperature. Here we propose a novel thermal management strategy to keep the cell temperature in the same order to attain maximum efficiency. The comparative study presented is based on four solar module configurations: a conventional photovoltaic module (PVT module), a conventional module with PCM layer underneath (PVT/PCM-I), a configuration where fins embedded into PCM (PVT/PCM-II), and  configuration where the bottom of the PCM layer in PVT/PCM-II was cooled via convection (PVT/PCM-III). The developed 3D numerical model is solved via ANSYS software involving the solar ray tracing radiation model for incident solar radiations and a transient melting-solidification thermo-fluid model to cater for PCM phase transition. Results from the numerical model were validated via a comparison of experimentally studied results presented in the literature. After 120 minutes, results show that the conversion efficiency of PV cells becomes 16.84%, 18.65%, 18.83%, and 18.98% after 120 minutes for PVT module, PVT/PCM-I, PVT/PCM-II, and PVT/PCM-III with an inlet velocity of 3m/s, respectively. For the respective configurations, the specific electrical power per unit area produced reaches 75.30W/m2, 83.39W/m2, 84.19W/m2, and 89.42W/m2 for solar radiation of 540W/m2 and 26°C ambient temperature. Results reveal that a 5 mm increase in the fin height for PVT/PCM-II results in a 0.22% increase in efficiency while a 0.5m/s increase in the inlet velocity of the cooling air for PVT/PCM-III results in about 0.06% increase in efficiency. 

Keywords


Photovoltaic module; Conversion efficiency; Thermal management; Phase change materials.

Full Text:

PDF

References


References

IRENA, “A Renewable Energy Roadmap Report,” Irena, no. June, p. 173, 2014.

O. Aboelwafa, S. E. K. Fateen, A. Soliman, and I. M. Ismail, “A review on solar Rankine cycles: Working fluids, applications, and cycle modifications,” Renew. Sustain. Energy Rev., vol. 82, no. February, pp. 868–885, 2018, doi: 10.1016/j.rser.2017.09.097.

B. Twomey, P. A. Jacobs, and H. Gurgenci, “Dynamic performance estimation of small-scale solar cogeneration with an organic Rankine cycle using a scroll expander,” Appl. Therm. Eng., vol. 51, no. 1–2, pp. 1307–1316, 2013, doi: 10.1016/j.applthermaleng.2012.06.054.

N. Savvakis and T. Tsoutsos, “Theoretical design and experimental evaluation of a PV+PCM system in the mediterranean climate,” Energy, vol. 220, p. 119690, 2021, doi: 10.1016/j.energy.2020.119690.

K. Ranabhat, L. Patrikeev, A. A. evna Revina, K. Andrianov, V. Lapshinsky, and E. Sofronova, “An introduction to solar cell technology,” J. Appl. Eng. Sci., vol. 14, no. 4, pp. 481–491, 2016, doi: 10.5937/jaes14-10879.

A. A and N. John, “Performance Evaluation of On-Grid and Off-Grid Solar Photovoltaic Systems,” Ijireeice, no. March, pp. 20–23, 2015, doi: 10.17148/ijireeice.2015.3205.

D. A. Quansah, M. S. Adaramola, and L. D. Mensah, “Solar Photovoltaics in Sub-Saharan Africa - Addressing Barriers, Unlocking Potential,” Energy Procedia, vol. 106, pp. 97–110, 2016, doi: 10.1016/j.egypro.2016.12.108.

T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Mater., vol. 2, no. 3, pp. 96–102, 2010, doi: 10.1038/asiamat.2010.82.

M. Tucci and M. Izzi, “High efficiency monocrystalline silicon solar cells: reaching the theoretical limit,” no. August, pp. 745–763, 2013.

E. Skoplaki and J. A. Palyvos, “On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations,” Sol. Energy, vol. 83, no. 5, pp. 614–624, 2009, doi: 10.1016/j.solener.2008.10.008.

T. A. Salaoru et al., “treatment Modelling of systems with multiple energy carriers in buildings Numerical study of air cooling photovoltaic panels using heat sinks,” 2016.

A. I. A. AL-Musawi, A. Taheri, A. Farzanehnia, M. Sardarabadi, and M. Passandideh-Fard, “Numerical study of the effects of nanofluids and phase-change materials in photovoltaic thermal (PVT) systems,” J. Therm. Anal. Calorim., vol. 137, no. 2, pp. 623–636, 2019, doi: 10.1007/s10973-018-7972-6.

H. A. Nasef, S. A. Nada, and H. Hassan, “Integrative passive and active cooling system using PCM and nanofluid for thermal regulation of concentrated photovoltaic solar cells,” Energy Convers. Manag., vol. 199, no. September, p. 112065, 2019, doi: 10.1016/j.enconman.2019.112065.

A. Royne, C. J. Dey, and D. R. Mills, “Cooling of photovoltaic cells under concentrated illumination: A critical review,” Sol. Energy Mater. Sol. Cells, vol. 86, no. 4, pp. 451–483, 2005, doi: 10.1016/j.solmat.2004.09.003.

K. Araki, H. Uozumi, and M. Yamaguchi, “A simple passive cooling structure and its heat analysis for 500 X concentrator PV module,” Conf. Rec. IEEE Photovolt. Spec. Conf., pp. 1568–1571, 2002, doi: 10.1109/pvsc.2002.1190913.

M. R. Shaeri and R. W. Bonner, “Analytical heat transfer model for laterally perforated-finned heat sinks,” Int. J. Heat Mass Transf., vol. 131, pp. 1164–1173, 2019, doi: 10.1016/j.ijheatmasstransfer.2018.11.138.

“Introduction to Engineering Heat Transfer.”

Hari Raghavan J and Rangu P, “A Study and Analysis on the Thermal Performance of a Pin Fin Heatsink for Natural Convection using CFD,” Int. J. Eng. Res., vol. V6, no. 05, 2017, doi: 10.17577/ijertv6is050563.

A. Uday Kumar, A. Javed, and S. K. Dubey, “Material Selection for Microchannel Heatsink: Conjugate Heat Transfer Simulation,” IOP Conf. Ser. Mater. Sci. Eng., vol. 346, no. 1, 2018, doi: 10.1088/1757-899X/346/1/012024.

A. Soni, “Study of Thermal Performance between Plate-fin, Pin-fin and Elliptical Fin Heat Sinks in Closed Enclosure under Natural Convection,” Int. Adv. Res. J. Sci. Eng. Technol. ISO, vol. 3297, no. 11, pp. 133–139, 2007, doi: 10.17148/IARJSET.2016.31126.

M. I. Hasan, A. M. A. R. Rageb, and M. Yaghoubi, “Investigation of a Counter Flow Microchannel Heat Exchanger Performance with Using Nanofluid as a Coolant,” J. Electron. Cool. Therm. Control, vol. 02, no. 03, pp. 35–43, 2012, doi: 10.4236/jectc.2012.23004.

P. Ruano et al., “We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %,” Intech, no. tourism, p. 13, 2016.

. K. A. T., “Review on Latent Heat Storage and Problems Associated With Phase Change Materials,” Int. J. Res. Eng. Technol., vol. 04, no. 10, pp. 176–182, 2015, doi: 10.15623/ijret.2015.0410030.

B. Kamkari, H. Shokouhmand, and F. Bruno, “Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure,” Int. J. Heat Mass Transf., vol. 72, pp. 186–200, 2014, doi: 10.1016/j.ijheatmasstransfer.2014.01.014.

R. Velraj, R. V. Seeniraj, B. Hafner, C. Faber, and K. Schwarzer, “Heat transfer enhancement in a latent heat storage system,” Sol. Energy, vol. 65, no. 3, pp. 171–180, 1999, doi: 10.1016/S0038-092X(98)00128-5.

Z. Arifin, D. D. D. P. Tjahjana, S. Hadi, R. A. Rachmanto, G. Setyohandoko, and B. Sutanto, “Numerical and experimental investigation of air cooling for photovoltaic panels using aluminum heat sinks,” Int. J. Photoenergy, vol. 2020, 2020, doi: 10.1155/2020/1574274.

S. A. Nada, D. H. El-Nagar, and H. M. S. Hussein, “Improving the thermal regulation and efficiency enhancement of PCM-Integrated PV modules using nano particles,” Energy Convers. Manag., vol. 166, no. January, pp. 735–743, 2018, doi: 10.1016/j.enconman.2018.04.035.

M. J. Huang, P. C. Eames, B. Norton, and N. J. Hewitt, “Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 7, pp. 1598–1603, 2011, doi: 10.1016/j.solmat.2011.01.008.

“RT25HC,” p. 2020, 2020.

D. Okello, J. Mubiru, and E. J. K. Banda, “Availability of direct solar radiation in Uganda,” 30th ISES Bienn. Sol. World Congr. 2011, SWC 2011, vol. 5, pp. 3554–3563, 2011, doi: 10.18086/swc.2011.24.22.

B. Niezgoda-Zelasko, “The Enthalpy-porosity Method Applied to the Modelling of the Ice Slurry Melting Process during Tube Flow,” Procedia Eng., vol. 157, pp. 114–121, 2016, doi: 10.1016/j.proeng.2016.08.346.

M. Emam, S. Ookawara, and M. Ahmed, “Performance study and analysis of an inclined concentrated photovoltaic-phase change material system,” vol. 150, pp. 229–245, 2017.

H. A. Nasef, S. A. Nada, and H. Hassan, “Integrative passive and active cooling system using PCM and nano fl uid for thermal regulation of concentrated photovoltaic solar cells,” vol. 199, no. June, 2019.

H. Shmueli, G. Ziskind, and R. Letan, “Melting in a vertical cylindrical tube: Numerical investigation and comparison with experiments,” Int. J. Heat Mass Transf., vol. 53, no. 19–20, pp. 4082–4091, 2010, doi: 10.1016/j.ijheatmasstransfer.2010.05.028.

M. E. A. Slimani, M. Amirat, I. Kurucz, S. Bahria, A. Hamidat, and W. B. Chaouch, “A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions,” Energy Convers. Manag., vol. 133, pp. 458–476, 2017, doi: 10.1016/j.enconman.2016.10.066.

S. Dubey, J. N. Sarvaiya, and B. Seshadri, “Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world - A review,” Energy Procedia, vol. 33, pp. 311–321, 2013, doi: 10.1016/j.egypro.2013.05.072.

P. Raghuraman, “Design considerations for flat-plate- photovoltaic/thermal collectors,” vol. 35, no. 3, pp. 227–241, 1985.

H. G. Teo, P. S. Lee, and M. N. A. Hawlader, “An active cooling system for photovoltaic modules,” Appl. Energy, vol. 90, no. 1, pp. 309–315, 2012, doi: 10.1016/j.apenergy.2011.01.017.

A. Radwan, S. Ookawara, and M. Ahmed, “Analysis and simulation of concentrating photovoltaic systems with a microchannel heat sink,” Sol. Energy, vol. 136, pp. 35–48, 2016, doi: 10.1016/j.solener.2016.06.070.

M. Sardarabadi, M. Passandideh-fard, M. Maghrebi, and M. Ghazikhani, “crossmark,” vol. 161, no. November 2016, pp. 62–69, 2017.

S. Cho et al., “Effects of infrared radiation and heat on human skin aging in vivo,” J. Investig. Dermatology Symp. Proc., vol. 14, no. 1, pp. 15–19, 2009, doi: 10.1038/jidsymp.2009.7.

G. TK and V. Raj, “Use of phase change material (PCM) for the improvement of thermal performance of cold storage,” MOJ Curr. Res. Rev., vol. 1, no. 2, pp. 49–61, 2018, doi: 10.15406/mojcrr.2018.01.00010.

M. Sardarabadi, M. Passandideh-Fard, M. J. Maghrebi, and M. Ghazikhani, “Experimental study of using both ZnO/ water nanofluid and phase change material (PCM) in photovoltaic thermal systems,” Sol. Energy Mater. Sol. Cells, vol. 161, no. November 2016, pp. 62–69, 2017, doi: 10.1016/j.solmat.2016.11.032.




DOI (PDF): https://doi.org/10.20508/ijsmartgrid.v5i4.218.g171

Refbacks



www.ijsmartgrid.com; www.ijsmartgrid.org

ilhcol@gmail.com; ijsmartgrid@nisantasi.edu.tr

Online ISSN: 2602-439X

Publisher: ilhami COLAK (istinye Univ)

https://www.ilhamicolak.org/english.htm

Cited in SCOPUS, Google Scholar and CrossRef